
Chapter 3 
 

 

Deriving Weights from Pairwise Comparison Matrices by Goal 

Programming 

 
 

 

3.1 Introduction 

 

There are four basic steps in AHP: construction of hierarchy which includes salient 

objects (criteria, alternatives, etc.) of the problem, formation of pairwise comparison 

matrices, elicitation of the local priority weights from the comparison matrices, and 

synthesis of these local priorities to obtain global (or overall) weights for the alternatives. 

The present chapter is concerned with the important third step, i.e., how to elicit weights 

from pairwise comparison matrices. 

    The issue of deriving weights from pairwise comparison matrices has attracted 

considerable attention in recent years and resulted in the development of several scaling 

methods. But unfortunately, there has not been any consensus about the choice of method 

to determine weights. In fact, the methodology should be such that the weights derived by 

it ‘best’ fit the data represented by the matrix A in (2.1). Different methods take this ‘best 

fitting’ in different ways. For completeness of this chapter, we repeat some discussions 

on weight determination methods. 

    Saaty (1977a), in his pioneering work, suggested the eigenvector method (EM). The 

superiority of EM over other methods is also discussed by Saaty and Vargas (1984b) and 

Saaty (1990c). Crawford and Williams (1985) and Crawford (1987) have advocated the 

logarithm least squares method (LLSM) which is also known as geometric mean method. 

They have discussed the preferability of LLSM to the EM with respect to several 

properties of ratio-scale matrices. Barzilai et al. (1987) algebraically validated the works 

of Crawford and Williams (1985) on LLSM. Another way of weight determination, the 

least squares method (LSM), is strongly suggested by Jensen (1984, 1989). In a recent 

paper, Bryson (1995) has used logarithmic goal programming method to derive the 

underlying weights from PCMs. Apart from these methods, some other methods are also 

available in AHP literature. Few of these are: row-column averaging procedure (Saaty, 

1977a), Chi-square method (Jensen, 1988), logarithmic absolute deviation method (Cook 

and Kress, 1988), a variant of eigenvector method (Takeda et al., 1987). A few more 

papers (e.g., Zahedi, 1986a; Golany and Kress, 1993) are mainly concerned with the 

question of comparison of several methods based upon their performances on various 

criteria.  

 

3.2 No Consensus on the Choice of Methodology and Proposition of a New 

Technique 

 

It is worth mentioning that all the methods mentioned in the previous section give exactly 

the same set of weights when the comparison matrix is consistent, i.e., it satisfies the 



consistency relation kjikij aaa   for all i, j, and k. But people are inherently inconsistent 

in their own judgments, especially if they are dealing with fuzzy concepts, such as 

quality, attractiveness, comfort, etc. Where there is inconsistency, various methods give 

diverse results and this diversity is proportional to the amount of inconsistency captured 

in the entries of comparison matrices. Obviously, there should be a certain limit of 

inconsistency, beyond which the solution might not be acceptable. One of the 

mentionable advantages of Saaty’s (1977a) eigenvector method (EM) is that it gives an 

index of inconsistency. According to him, elicited weights will be acceptable if 

consistency ratio (C.R.) of the matrix is lees than 0.10. Further, the eigenvector method is 

primarily concerned with preserving ordinal priorities. But EM fails to preserve “inverse 

reciprocity” property (described in the previous chapter), whereas LLSM preserves it. 

This is a remarkable advantage of LLSM over EM. On the other hand, least squares 

method (LSM) is invoked to obtain the weights so as to minimize the deviational error 
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With respect to the foregoing criterion of minimization of Euclidean distance, LSM 

outperforms both EM and LLSM. But computationally, LSM is not at all favorable. It is 

also to be noted that neither LLSM nor LSM gives any well-accepted index measuring 

inconsistency, however, they satisfy the important ratio-scale matrix property, ‘inverse 

reciprocity’. Although, Bryson’s (1995) goal programming method has some desirable 

properties, but in this method, instead of dealing with the actual responses provided by 

the DM, the author has dealt with their corresponding logarithmic values; this 

necessitates subsequent transformation and normalization of the computed weights. It is 

now clear that each method has some advantages and some disadvantages. But every 

method gives optimal solution with respect to the criterion for which it is designed. 

Golany and Kress (1993, page 219) writes: 

    “The choice of method should be dictated by the objectives of the analysis and the 

desired measure of effectiveness. Evidently, different objectives may result in different 

scaling methods.” 

    It is already mentioned that LSM is optimal under the criterion ‘minimization of 

Euclidean distances’ between actual responses, i.e., the aij’s, and their corresponding 

consistency adjusted surrogates, namely, jiij wwu / ’s. In this chapter, we are concerned 

with the ‘minimization of absolute deviation between aij’s and uij’s (i.e., maximization of 

the number of satisfied cells in the matrix). We assume that, while obtaining estimates of 

weights from comparison matrices, decision maker’s (DM) goal is to get the weights 

whose pairwise ratios are closest to aij’s. This motivation leads to the problem of 

minimization of absolute deviations, not the sum of squares of errors (SSE), as it is done 

in LSM. 

    In the next section, we show how the goal programming technique can be used to 

minimize the absolute deviations between aij’s and uij’s. 

 

 

 



3.3 Goal Programming as a Weight Determination Technique 

 

To obtain the absolute deviation ratio-scale weights wi, i = 1, 2,…, n, from the ratio-scale 

comparison matrix A in (2.1), we 
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The foregoing weight derivation minimization problem can be reformulated as a 

lexicographic goal programming problem: 

 

Minimize lexicographically:    a =  
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It is to be noted that satisfaction of the normalization constraint and the sum of all other 

deviational variables, nij and pij, i = 1, 2,…, n-1;   j = i + 1, …, n have been kept at the 

first and second priority levels, respectively. 

    Actually, there is a number of least distance approximation models for finding 

estimates of w in the sense of minimizing the distances of the response elements aij from 

their corresponding consistency adjusted surrogates uij. Although the distance measure in 

the least squares method is a reasonable and widely used measure of deviation, but this is 

not the case in the weight extraction problem. Here, the decision analyst is interested to 

obtain the weights whose ratios are closest to aij values. This necessitates the use of 

absolute deviation minimization technique. Typically, this job can be done by goal 

programming which has a number of advantages over the least squares method. 

 

 

3.4 Advantages of Goal Programming Method (GPM) 

 

Since we are concerned with the problem of minimization of distances between aij’s and 

uij’s, we compare goal programming method with LSM and LLSM. Following are some 

of the advantages of the goal programming method over LSM and LLSM: 

 

1. There is no well-established algorithm to derive weights from ratio-scale 

matrices by using the LSM. The algorithm of LSM mentioned in Saaty and 

Vargas (1984b) is not computationally efficient. This is the major 

disadvantage of using LSM, whereas, using goal programming we can easily 

calculate the weights. Many computer codes are also available for goal 

programming. 

 

 



2. In general, goal programming method (GPM) satisfies the maximum number 

of elements in the comparison matrix (verified empirically). This is a 

remarkable advantage of GPM over other methods (see Table 3.4). 

 

 

3. There may be no comparison or more than one comparisons for some cells in 

the comparison matrices. In such cases, LLSM minimizes 
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where nij may be zero (no judgment is available) or greater than one 

(indicating multiple judgments). Note that LLSM does not yield any closed 

form solution (Crawford, 1987) in this case. Although a problem of multiple 

decision makers can be tackled by LSM, but it is even more difficult than the 

case of single DM. Evidently, the case of no judgment or multiple judgments 

can be effectively tackled by GPM. For multiple decision makers, the set of 

all the pertinent judgments for a specific comparison may be taken as a closed 

interval. 

 

4. While forming comparison matrices, DM may not be equally certain about all 

the pairs of comparisons, i.e., the degree of confidence for all the comparisons 

may not be equal (by degree of confidence, we mean how easily the DM has 

specified his judgments). Further, it can be easily checked that the marginal 

impacts of all the cells on the resulting solution are not equal (Takeda et al., 

1987). In addition to this, DM may prefer to satisfy some particular cells for 

some reason. If this is the case, then it can be easily accomplished by placing 

the concerned constraints at the higher priority level in the goal programming 

formulation. This task cannot be accomplished by LSM or LLSM. 

 

5. In course of articulating preferences, DM may give his/her strength of 

preference as ‘at least 3’ or ‘at most 5’ for example. This type of preferences 

can be considered by minimizing the appropriate deviational variable in the 

achievement vector a. It is to be noted that LSM and LLSM lack this 

advantage of goal programming. 

 

6. The task of sensitivity analysis can easily be performed by goal programming 

method (see Ignizio, 1982, Chapter 19). 

 

 

3.5 Numerical Example 

 

In this section, we extract weights from the following two comparison matrices adopted 

from Saaty and Vargas (1984b). In the first matrix, the departure from consistency is 

relatively large, whereas in the second one, the departure from consistency is not that 

much. 



 

 

 

 

 

Example 3.1: 

 

 

 

 

 

 

 

 

 

Example 3.2: 

 

 

 

 

 

 

 

 

 

 

The consistency ratio (C.R.) of the matrix in example 3.1 is 0.896, which is much greater 

than 0.10, but the matrix of example 3.2 is not that much inconsistent. Its C.R. = 0.079, 

which is less than 0.10. The relative weights determined by LLSM, LSM, and GPM for 

all the objects in Examples 3.1 and 3.2 are shown in Table 3.1 and Table 3.2, 

respectively. The total absolute deviation (TAD) and error sum of squares (SSE) are also 

shown in these tables. The individual absolute deviations for all the three methods are 

shown in Table 3.3 (for Example 3.1) and Table 3.4 (for Example 3.2). 

 

Table 3.1: Normalized weights of the four objects (Example 3.1) 

Methods 
1w  2w  3w  

 

4w  TAD SSE 

LLSM 0.1930 0.1840 0.3190 0.3040 15.8687 37.8049 

LSM 0.1180 0.1750 0.2930 0.4080 14.8840 34.5373 

GPM 0.1304 0.0870 0.2609 0.5217 13.5504 55.1473 

 

 

 

 

 

 

 O1 O2 O3 O4 

O1 1 4 ½ 1/5 

O2 ¼ 1 1/3 4 

O3 2 3 1 ½ 

O4 5 ¼ 2 1 

 O1 O2 O3 O4 O5 

O1 1 1/6 1/3 1/8 5 

O2 6 1 2 1 8 

O3 3 ½ 1 ½ 5 

O4 8 1 2 1 5 

O5 1/5 1/8 1/5 1/5 1 



Table 3.2: Normalized weights of the five objects (Example 3.2) 

 
Method 

 

1w  2w  3w  

 

4w  5w   
TAD 

 
SSE 

LLSM 0.0730 0.3580 0.1870 0.0360 0.0360 15.4836 46.0796 

LSM 0.0550 0.3630 0.2010 0.3320 0.0490 12.1545 24.6653 

GPM 0.0597 0.3582 0.1791 0.3582 0.0448 10.3876 27.7405 

 

 

 

 
 

Table 3.3: Individual absolute deviations 

ijij ua   (Example 3.1) 

Method 

 

Col. 1 

 

Col. 2 Col. 3     Col. 4 

LLSM 0.0000 2.9511 0.1050 0.4349 

LSM 0.0000 3.3257 0.1040 0.0892 

GPM 0.0000 2.5011 0.0002 0.0500 

LLSM 0.7034 0.0000 0.2423 3.3947 
LSM 1.2331 0.0000 0.2532 3.5711 

GPM 0.4172 0.0000 0.0005 3.8332 

LLSM 0.3472 1.2663 0.0000 0.5493 
LSM 0.5254 1.2971 0.0040 0.2304 

GPM 0.0008 0.0011 0.0000 0.0001 

LLSM 3.4249 1.4022 1.0470 0.0000 

LSM 1.5424 2.0814 0.6309 0.0000 
GPM 0.9992 5.7466 0.0004 0.0000 

 

 
 

 

Table 3.3: Individual absolute deviations 

ijij ua   (Example 3.1) 

Method 
 

Col. 1 
 

Col. 2 Col. 3 Col. 4 Col. 5 

LLSM 0.0000 0.0372 0.0564 0.0860 2.9722 

LSM 0.0000 0.0152 0.0604 0.0407 3.8776 
GPM 0.0000 0.0000 0.0007 0.0417 3.6674 

LLSM 1.0959 0.0000 0.0856 0.0347 1.9444 

LSM 0.6000 0.0000 0.1940 0.0934 0.5918 

GPM 0.0000 0.0000 0.0000 0.0000 0.0045 

LLSM 0.4384 0.0223 0.0000 0.0445 0.1944 

LSM 0.6545 0.0537 0.0000 0.1054 0.8980 

GPM 0.0000 0.0000 0.0000 0.0000 1.0032 

LLSM 3.2603 0.0335 0.1497 0.0000 4.6111 
LSM 1.9636 0.0854 0.3483 0.0000 1.7755 

GPM 2.0000 0.0000 0.0000 0.0000 2.9955 

LLSM 0.2932 0.0244 0.0075 0.0960 0.0000 

LSM 0.6909 0.0100 0.0438 0.0524 0.0000 

GPM 0.5504 0.0001 0.0501 0.7490 0.0000 

 

 
 

3.6 Discussion 

 

There are several important points which can be noted down from Table 3.1 through 

Table 3.4. 

 



1. From Table 3.1 and 3.2, we note that the total absolute deviations due to 

GPM for both the examples are less than the corresponding values 

calculated by LLSM and LSM. 

 

2. From Tables 3.3 and 3.4, we observe that the total number of satisfied and 

‘almost satisfied’ cells in GPM are more than the corresponding numbers in 

LLSM and LSM. Therefore, it may be concluded that the weights obtained 

by GPM better fit the articulated responses in the matrices. 

 

3. The inconsistent element can be easily identified by GPM (see cell a42 in 

Table 3.3). On this point elaborate discussion is available in Ignizio (1982, 

page 250-252). 

 

4. SSE is the least in LSM, as expected. 

 

5. From Table 3.1, we observe that the weights derived by various methods are 

significantly dispersed indicating presence of large amount of 

inconsistencies in the elements. The weights in Table 3.2 do not differ much 

due to minor inconsistency. 

 

6. Dyer and Wendell (1985) and Holder (1990) have discussed the drawbacks 

of Saaty’s (1/9-9) ratio-scale. Suppose, the object Oi is slightly more 

preferable to the object Oj, then according to Saaty’s scale, the 

corresponding ratio is 2. But in any way, this does not mean that Oi is 2 

times preferable than Oj, i.e., if any weight elicitation technique gives the 

weight of Oi and Oj in the exact ratio 2:1, then this will not match with 

Saaty’s interpretation. There are many examples in AHP literature, where 

this anomaly occurs. If decision makers want to use GPM as a weight 

elicitation technique, then we should take the meaning of ratio-scale in the 

ordinary sense. The typical question, which is to be asked, is: “between two 

objects which one is more preferable and how many times (instead of how 

much more)?” By this way, DM may violate the limits of the (1/9-9) scale. 

Also he/she may be allowed to give any number between the limits of the 

scale. If the scale is interpreted in the foregoing manner, then GPM will 

give ‘better’ results than EM, LLSM or LSM. This fact is indicated by the 

more number of zeros in Table 3.4 corresponding to GPM. 

 

 

3.7 Performance of Goal Programming Method on Various Criteria 

 

The six potential criteria to evaluate performances of various weight determination 

techniques are: 

 

(i) element preference reversal avoidance, 

 

(ii) moderate rank row preference reversal minimization, 



 

(iii) weak rank preference reversal minimization, 

 

(iv) strong rank preference reversal minimization, 

 

(v) row (column) permutation invariance, and 

 

(vi) respond bound violation minimization and minimization of 

magnitudes of surrogate weight ratios. 

 

The definitions of these criteria are given in the previous chapter. Experimentally, it is 

tested that ‘element preference reversal’ and ‘moderate rank preference reversal’ are 

unavoidable in GPM as in other methods, whereas GPM avoids ‘strong rank preference 

reversal’ always. 

    In Example 3.1, LSM fails to avoid weak rank preference reversal, whereas GPM 

preserves the same. 

    Jensen (1989) has proved that all additive error models (note that GPM belongs to 

additive error models) are row (column) permutation invariant. Although GPM fails to 

minimize the magnitudes of surrogate ratios, but it may give lesser number of respond 

bound violations than LSM (see Tables 3.3 & 3.4). 

 

 

3.8 Concluding Remarks 

 

There is a proliferation of methods for estimation of weights from Saaty’s pairwise 

comparison matrices. But none has emerged as the ‘best.’ The well-known least squares 

method is adopted to minimize the Euclidean distances. But in the weight extraction 

problem, decision maker desires to obtain that set of weights for which pairwise ratios are 

closest to the corresponding aij values in the comparison matrix. Naturally, goal 

programming can be utilized to achieve this ‘goal’. In this chapter, we have proposed 

goal programming method as an alternative ratio scaling technique and shown its 

superiority over LSM and LLSM with respect to a number of aspects of ratio-scale 

matrices. Empirically, it is observed that goal programming technique satisfies maximum 

number of elements in a comparison matrix. With respect to this criterion, GPM 

outperforms all other techniques. 

    Lastly, we emphasize the fact that, in general, there is no single weight elicitation 

technique which satisfies all potential concerns of the DM. The technique should be 

chosen in accordance with the concerns kept in DM’s mind. 

 


